๐Ÿ†• Build and deploy Haystack pipelines with deepset Studio
Maintained by deepset

Integration: OpenSearch

A Document Store for storing and retrieval from OpenSearch

Authors
Thomas Stadelmann
Julian Risch
deepset

Table of Contents

Haystack 2.0

PyPI - Version PyPI - Python Version test


Installation

Use pip to install OpenSearch:

pip install opensearch-haystack

Usage

Once installed, initialize your OpenSearch database to use it with Haystack 2.0:

from haystack_integrations.document_stores.opensearch import OpenSearchDocumentStore

document_store = OpenSearchDocumentStore()

Writing Documents to OpenSearchDocumentStore

To write documents to OpenSearchDocumentStore, create an indexing pipeline.

from haystack.components.file_converters import TextFileToDocument
from haystack.components.writers import DocumentWriter

indexing = Pipeline()
indexing.add_component("converter", TextFileToDocument())
indexing.add_component("writer", DocumentWriter(document_store))
indexing.connect("converter", "writer")
indexing.run({"converter": {"paths": file_paths}})

License

opensearch-haystack is distributed under the terms of the Apache-2.0 license.

Haystack 1.x

You can use OpenSearch in your Haystack pipelines with the OpenSearchDocumentStore

For a detailed overview of all the available methods and settings for the OpenSearchDocumentStore, visit the Haystack API Reference

Installation (1.x)

pip install farm-haystack[opensearch]

Usage (1.x)

Once installed and running, you can start using OpenSearch with Haystack by initializing it:

from haystack.document_stores import OpenSearchDocumentStore

document_store = OpenSearchDocumentStore()

Writing Documents to OpenSearchDocumentStore

To write documents to your OpenSearchDocumentStore, create an indexing pipeline, or use the write_documents() function. For this step, you may make use of the available FileConverters and PreProcessors, as well as other Integrations that might help you fetch data from other resources.

Indexing Pipeline

from haystack import Pipeline
from haystack.document_stores import OpenSearchDocumentStore
from haystack.nodes import PDFToTextConverter, PreProcessor

document_store = OpenSearchDocumentStore()
converter = PDFToTextConverter()
preprocessor = PreProcessor()

indexing_pipeline = Pipeline()
indexing_pipeline.add_node(component=converter, name="PDFConverter", inputs=["File"])
indexing_pipeline.add_node(component=preprocessor, name="PreProcessor", inputs=["PDFConverter"])
indexing_pipeline.add_node(component=document_store, name="DocumentStore", inputs=["PreProcessor"])

indexing_pipeline.run(file_paths=["filename.pdf"])

Using OpenSearch in a Query Pipeline

Once you have documents in your OpenSearchDocumentStore, it’s ready to be used in any Haystack pipeline. For example, below is a pipeline that makes use of the “deepset/question-generation” prompt that is designed to generate questions for the retrieved documents. If our OpenSearchDocumentStore had documents about food in it, you could generate questions about “Pizzas” in the following way:

from haystack import Pipeline
from haystack.document_stores import OpenSearchDocumentStore
from haystack.nodes import BM25Retriever, PromptNode

document_store = OpenSearchDocumentStore()
retriever = BM25Retriever(document_sotre = document_store)
prompt_node = PromptNode(model_name_or_path = "gpt-4",
                         api_key = "YOUR_OPENAI_KEY",
                         default_prompt_template = "deepset/question-generation")

query_pipeline = Pipeline()
query_pipeline.add_node(component=retriever, name="Retriever", inputs=["Query"])
query_pipeline.add_node(component=prompt_node, name="PromptNode", inputs=["Retriever"])

query_pipeline.run(query = "Pizzas")