🆕 Build and deploy Haystack pipelines with deepset Studio
Maintained by deepset

Integration: langfuse

Monitor and trace your Haystack requests.

Authors
deepset

Table of Contents

Overview

langfuse-haystack integrates tracing capabilities into Haystack (2.x) pipelines using Langfuse. This package enhances the visibility of pipeline runs by capturing comprehensive details of the execution traces, including API calls, context data, prompts, and more. Whether you’re monitoring model performance, pinpointing areas for improvement, or creating datasets for fine-tuning and testing from your pipeline executions, langfuse-haystack is the right tool for you.

Features

  • Easy integration with Haystack pipelines
  • Capture the full context of the execution
  • Track model usage and cost
  • Collect user feedback
  • Identify low-quality outputs
  • Build fine-tuning and testing datasets

In order to use this integration, sign up for a Langfuse account. See the Langfuse docs for the most up-to-date information about features and pricing.

Installation

pip install langfuse-haystack

Usage

Components

This integration introduces one component:

  • The LangfuseConnector:

    LangfuseConnector connects Haystack LLM framework with Langfuse in order to enable the tracing of operations and data flow within various components of a pipeline. Simply this component to your pipeline, but do not connect it to any other component. The LangfuseConnector will automatically trace the operations and data flow within the pipeline.

    Note that you need to set the LANGFUSE_SECRET_KEY and LANGFUSE_PUBLIC_KEY environment variables in order to use this component. The LANGFUSE_SECRET_KEY and LANGFUSE_PUBLIC_KEY are the secret and public keys provided by Langfuse. You can get these keys by signing up for an account on the Langfuse website. In addition, you need to set the HAYSTACK_CONTENT_TRACING_ENABLED environment variable to true in order to enable Haystack tracing in your pipeline.

    These code examples also require an OPENAI_API_KEY environment variable to be set. Haystack is model-agnostic and you can use any model provider we support, by changing the generator in the code samples below.

Use LangfuseConnector in a RAG pipeline:

First, install a few more dependencies.

pip install sentence-transformers datasets
from datasets import load_dataset
from haystack import Document, Pipeline
from haystack.components.builders import PromptBuilder
from haystack.components.embedders import SentenceTransformersDocumentEmbedder, SentenceTransformersTextEmbedder
from haystack.components.generators import OpenAIGenerator
from haystack.components.retrievers import InMemoryEmbeddingRetriever
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack_integrations.components.connectors.langfuse import LangfuseConnector


def get_pipeline(document_store: InMemoryDocumentStore):
    retriever = InMemoryEmbeddingRetriever(document_store=document_store, top_k=2)

    template = """
    Given the following information, answer the question.
    Context:
    {% for document in documents %}
        {{ document.content }}
    {% endfor %}
    Question: {{question}}
    Answer:
    """

    prompt_builder = PromptBuilder(template=template)

    basic_rag_pipeline = Pipeline()
    # Add components to your pipeline
    basic_rag_pipeline.add_component("tracer", LangfuseConnector("Basic RAG Pipeline"))
    basic_rag_pipeline.add_component(
        "text_embedder", SentenceTransformersTextEmbedder(model="sentence-transformers/all-MiniLM-L6-v2")
    )
    basic_rag_pipeline.add_component("retriever", retriever)
    basic_rag_pipeline.add_component("prompt_builder", prompt_builder)
    basic_rag_pipeline.add_component("llm", OpenAIGenerator(model="gpt-3.5-turbo", generation_kwargs={"n": 2}))

    # Now, connect the components to each other
    # NOTE: the tracer component doesn't need to be connected to anything in order to work
    basic_rag_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
    basic_rag_pipeline.connect("retriever", "prompt_builder.documents")
    basic_rag_pipeline.connect("prompt_builder", "llm")

    return basic_rag_pipeline

document_store = InMemoryDocumentStore()
dataset = load_dataset("bilgeyucel/seven-wonders", split="train")
embedder = SentenceTransformersDocumentEmbedder("sentence-transformers/all-MiniLM-L6-v2")
embedder.warm_up()
docs_with_embeddings = embedder.run([Document(**ds) for ds in dataset]).get("documents") or []  # type: ignore
document_store.write_documents(docs_with_embeddings)

pipeline = get_pipeline(document_store)
question = "What does Rhodes Statue look like?"
response = pipeline.run({"text_embedder": {"text": question}, "prompt_builder": {"question": question}})
# {'tracer': {'name': 'Basic RAG Pipeline', 'trace_url': 'https://cloud.langfuse.com/trace/3d52b8cc-87b6-4977-8927-5e9f3ff5b1cb'}, 'llm': {'replies': ['The Rhodes Statue was described as being about 105 feet tall, with iron tie bars and brass plates forming the skin. It was built on a white marble pedestal near the Rhodes harbour entrance. The statue was filled with stone blocks as construction progressed.', 'The Rhodes Statue was described as being about 32 meters (105 feet) tall, built with iron tie bars, brass plates for skin, and filled with stone blocks. It stood on a 15-meter-high white marble pedestal near the Rhodes harbor entrance.'], 'meta': [{'model': 'gpt-3.5-turbo-0125', 'index': 0, 'finish_reason': 'stop', 'usage': {'completion_tokens': 100, 'prompt_tokens': 453, 'total_tokens': 553}}, {'model': 'gpt-3.5-turbo-0125', 'index': 1, 'finish_reason': 'stop', 'usage': {'completion_tokens': 100, 'prompt_tokens': 453, 'total_tokens': 553}}]}}

Once you’ve run these code samples, you can also use the Langfuse dashboard to see and interact with traces.

Use LangfuseConnector in a RAG pipeline:

from haystack import Pipeline
from haystack.components.builders import ChatPromptBuilder
from haystack.components.generators.chat import OpenAIChatGenerator
from haystack.dataclasses import ChatMessage
from haystack_integrations.components.connectors.langfuse import LangfuseConnector

pipe = Pipeline()
pipe.add_component("tracer", LangfuseConnector("Chat example"))
pipe.add_component("prompt_builder", ChatPromptBuilder())
pipe.add_component("llm", OpenAIChatGenerator(model="gpt-3.5-turbo"))

pipe.connect("prompt_builder.prompt", "llm.messages")
messages = [
    ChatMessage.from_system("Always respond in German even if some input data is in other languages."),
    ChatMessage.from_user("Tell me about {{location}}"),
]

response = pipe.run(
    data={"prompt_builder": {"template_variables": {"location": "Berlin"}, "template": messages}}
)
print(response["llm"]["replies"][0])
print(response["tracer"]["trace_url"])
# ChatMessage(content='Berlin ist die Hauptstadt von Deutschland und zugleich eines der bekanntesten kulturellen Zentren Europas. Die Stadt hat eine faszinierende Geschichte, die bis in die Zeiten des Zweiten Weltkriegs und des Kalten Krieges zurückreicht. Heute ist Berlin für seine vielfältige Kunst- und Musikszene, seine historischen Stätten wie das Brandenburger Tor und die Berliner Mauer sowie seine lebendige Street-Food-Kultur bekannt. Berlin ist auch für seine grünen Parks und Seen beliebt, die den Bewohnern und Besuchern Raum für Erholung bieten.', role=<ChatRole.ASSISTANT: 'assistant'>, name=None, meta={'model': 'gpt-3.5-turbo-0125', 'index': 0, 'finish_reason': 'stop', 'usage': {'completion_tokens': 137, 'prompt_tokens': 29, 'total_tokens': 166}})
# https://cloud.langfuse.com/trace/YOUR_UNIQUE_IDENTIFYING_STRING

License

langfuse-haystack is distributed under the terms of the Apache-2.0 license.