๐ŸŽ„ Advent of Haystack solutions are here, explore them now!
Maintained by deepset

Integration: Elasticsearch

Use an Elasticsearch database with Haystack

Authors
deepset

Table of Contents

Haystack 2.0

The ElasticsearchDocumentStore is maintained in haystack-core-integrations repo. It allows you to use Elasticsearch as data storage for your Haystack pipelines.

For a details on available methods, visit the API Reference

Installation

To run an Elasticsearch instance locally, first follow the installation and start up guides.

pip install elasticsearch-haystack

Usage

Once installed, you can start using your Elasticsearch database with Haystack by initializing it:

from haystack_integrations.document_stores.elasticsearch import ElasticsearchDocumentStore

document_store = ElasticsearchDocumentStore(hosts = "http://localhost:9200")

Writing Documents to ElasticsearchDocumentStore

To write documents to your ElasticsearchDocumentStore, create an indexing pipeline with a DocumentWriter, or use the write_documents() function. For this step, you can use the available TextFileToDocument and DocumentSplitter, as well as other Integrations that might help you fetch data from other resources.

Indexing Pipeline

from haystack_integrations.document_stores.elasticsearch import ElasticsearchDocumentStore
from haystack import Pipeline
from haystack.components.embedders import SentenceTransformersDocumentEmbedder
from haystack.components.converters import TextFileToDocument
from haystack.components.preprocessors import DocumentSplitter
from haystack.components.writers import DocumentWriter 

document_store = ElasticsearchDocumentStore(hosts = "http://localhost:9200")
converter = TextFileToDocument()
splitter = DocumentSplitter()
doc_embedder = SentenceTransformersDocumentEmbedder(model="sentence-transformers/multi-qa-mpnet-base-dot-v1")
writer = DocumentWriter(document_store)

indexing_pipeline = Pipeline()
indexing_pipeline.add_component("converter", converter)
indexing_pipeline.add_component("splitter", splitter)
indexing_pipeline.add_component("doc_embedder", doc_embedder)
indexing_pipeline.add_component("writer", writer)

indexing_pipeline.connect("converter", "splitter")
indexing_pipeline.connect("splitter", "doc_embedder")
indexing_pipeline.connect("doc_embedder", "writer")

indexing_pipeline.run({
    "converter":{"sources":["filename.txt"]}
    })

Using Elasticsearch in a Query Pipeline

Once you have documents in your ElasticsearchDocumentStore, it’s ready to be used with with ElasticsearchEmbeddingRetriever in the retrieval step of any Haystack pipeline such as a Retrieval Augmented Generation (RAG) pipelines. Learn more about Retrievers to make use of vector search within your LLM pipelines.

from haystack_integrations.document_stores.elasticsearch import ElasticsearchDocumentStore
from haystack import Pipeline
from haystack.components.embedders import SentenceTransformersTextEmbedder 
from haystack_integrations.components.retrievers.elasticsearch import ElasticsearchEmbeddingRetriever

model = "sentence-transformers/multi-qa-mpnet-base-dot-v1"

document_store = ElasticsearchDocumentStore(hosts = "http://localhost:9200")


retriever = ElasticsearchEmbeddingRetriever(document_store=document_store)
text_embedder = SentenceTransformersTextEmbedder(model=model)

query_pipeline = Pipeline()
query_pipeline.add_component("text_embedder", text_embedder)
query_pipeline.add_component("retriever", retriever)
query_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")

result = query_pipeline.run({"text_embedder": {"text": "historical places in Instanbul"}})

print(result)

Haystack 1.x

The ElasticsearchDocumentStore is maintained within the core Haystack project. It allows you to use Elasticsearch as data storage for your Haystack pipelines.

For a details on available methods, visit the API Reference

Installation (1.x)

To run an Elasticsearch instance locally, first follow the installation and start up guides.

pip install farm-haystack[elasticsearch]

To install Elasticsearch 7, you can run pip install farm-haystac[elasticsearch7].

Usage (1.x)

Once installed, you can start using your Elasticsearch database with Haystack by initializing it:

from haystack.document_stores import ElasticsearchDocumentStore

document_store = ElasticsearchDocumentStore(host = "localhost",
                                            port = 9200,
                                            embedding_dim = 768)

Writing Documents to ElasticsearchDocumentStore

To write documents to your ElasticsearchDocumentStore, create an indexing pipeline, or use the write_documents() function. For this step, you may make use of the available FileConverters and PreProcessors, as well as other Integrations that might help you fetch data from other resources.

Indexing Pipeline

from haystack import Pipeline
from haystack.document_stores import ElasticsearchDocumentStore
from haystack.nodes import TextConverter, PreProcessor

document_store = ElasticsearchDocumentStore(host = "localhost", port = 9200)
converter = TextConverter()
preprocessor = PreProcessor()

indexing_pipeline = Pipeline()
indexing_pipeline.add_node(component=converter, name="TextConverter", inputs=["File"])
indexing_pipeline.add_node(component=preprocessor, name="PreProcessor", inputs=["TextConverter"])
indexing_pipeline.add_node(component=document_store, name="DocumentStore", inputs=["PreProcessor"])

indexing_pipeline.run(file_paths=["filename.txt"])

Using Elasticsearch in a Query Pipeline

Once you have documents in your ElasitsearchDocumentStore, it’s ready to be used in any Haystack pipeline. Such as a Retrieval Augmented Generation (RAG) pipeline. Learn more about Retrievers to make use of vector search within your LLM pipelines.

from haystack import Pipeline
from haystack.document_stores import ElasticsearchDocumentStore
from haystack.nodes import EmbeddingRetriever, PromptNode

document_store = ElasticsearchDocumentStore()
retriever = EmbeddingRetriever(document_store = document_store,
                               embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1")
prompt_node = PromptNode(model_name_or_path = "google/flan-t5-xl", default_prompt_template = "deepset/question-answering")

query_pipeline = Pipeline()
query_pipeline.add_node(component=retriever, name="Retriever", inputs=["Query"])
query_pipeline.add_node(component=prompt_node, name="PromptNode", inputs=["Retriever"])

query_pipeline.run(query = "Where is Istanbul?")